Last day, we made the following definition:

Definition 1 We say the function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

In order for a function f to be continuous at a, we must have

- ∢ ≣ →

3 N

э

Last day, we made the following definition:

Definition 1 We say the function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

In order for a function f to be continuous at a, we must have

▶ *f*(*a*) is defined (*a* is in the domain of *f*).

- ∢ ≣ →

3 N

э

Last day, we made the following definition:

Definition 1 We say the function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

In order for a function f to be continuous at a, we must have

- f(a) is defined (a is in the domain of f).
- ▶ $\lim_{x\to a} f(x)$ exists.

Last day, we made the following definition:

Definition 1 We say the function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

In order for a function f to be continuous at a, we must have

- f(a) is defined (a is in the domain of f).
- ▶ $\lim_{x\to a} f(x)$ exists.
- $\blacktriangleright \lim_{x\to a} f(x) = f(a).$

Last day, we made the following definition:

Definition 1 We say the function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

In order for a function f to be continuous at a, we must have

- f(a) is defined (a is in the domain of f).
- ▶ $\lim_{x\to a} f(x)$ exists.
- $\blacktriangleright \lim_{x\to a} f(x) = f(a).$
- ▶ If any one of the above 3 conditions fail, *f* is discontinuous at *a*.

Last day, we made the following definition:

Definition 1 We say the function f is continuous at a number a if

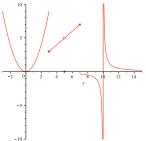
$$\lim_{x\to a}f(x)=f(a).$$

In order for a function f to be continuous at a, we must have

- f(a) is defined (a is in the domain of f).
- ▶ $\lim_{x\to a} f(x)$ exists.
- $\blacktriangleright \lim_{x\to a} f(x) = f(a).$
- ▶ If any one of the above 3 conditions fail, *f* is discontinuous at *a*.
- The discontinuities may be removable discontinuities, jump discontinuities or infinite discontinuities.

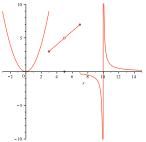
- ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ● の Q ()

All of the above-mentioned types of discontinuities are evident in the graph below:



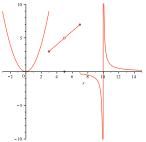
A function f is continuous from the right at a number a if $\lim_{x\to a^+} = f(a)$. A function f is continuous from the left at a number a if $\lim_{x\to a^-} = f(a)$.

All of the above-mentioned types of discontinuities are evident in the graph below:



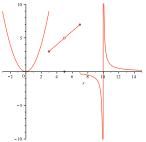
- A function f is continuous from the right at a number a if $\lim_{x\to a^+} = f(a)$. A function f is continuous from the left at a number a if $\lim_{x\to a^-} = f(a)$.
 - The function above is NOT continuous from the left at x = 3, 5 and 10.

All of the above-mentioned types of discontinuities are evident in the graph below:



- A function f is continuous from the right at a number a if $\lim_{x\to a^+} = f(a)$. A function f is continuous from the left at a number a if $\lim_{x\to a^-} = f(a)$.
 - The function above is NOT continuous from the left at x = 3, 5 and 10.
 - The function above IS continuous from the left at x = 7 and at any point where the function is continuous.

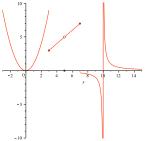
All of the above-mentioned types of discontinuities are evident in the graph below:



- A function f is continuous from the right at a number a if $\lim_{x\to a^+} = f(a)$. A function f is continuous from the left at a number a if $\lim_{x\to a^-} = f(a)$.
 - The function above is NOT continuous from the left at x = 3, 5 and 10.
 - The function above IS continuous from the left at x = 7 and at any point where the function is continuous.
 - The function above is NOT continuous from the right at x = 5, 10 and 7

* 注 ▶ …

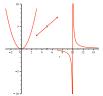
All of the above-mentioned types of discontinuities are evident in the graph below:



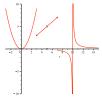
A function f is continuous from the right at a number a if $\lim_{x\to a^+} = f(a)$. A function f is continuous from the left at a number a if $\lim_{x\to a^-} = f(a)$.

- The function above is NOT continuous from the left at x = 3, 5 and 10.
- The function above IS continuous from the left at x = 7 and at any point where the function is continuous.
- The function above is NOT continuous from the right at x = 5, 10 and 7
- ▶ The function above IS continuous from the right at x = 3 and at any point where the function is continuous

Definition A function f is <u>continuous on an interval</u> if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand *continuous* at the endpoint to mean *continuous from* the right or continuous from the left at the endpoint as appropriate.)

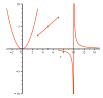


Definition A function f is <u>continuous on an interval</u> if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand *continuous* at the endpoint to mean *continuous from* the right or continuous from the left at the endpoint as appropriate.)



► The function shown above is continuous on the intervals (-∞, 0] and (-∞, 3) since it is continuous at every point in these intervals.

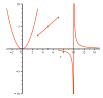
Definition A function f is <u>continuous on an interval</u> if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand *continuous* at the endpoint to mean *continuous from the right or continuous from the left* at the endpoint as appropriate.)



- The function shown above is continuous on the intervals (-∞, 0] and (-∞, 3) since it is continuous at every point in these intervals.
- The function shown above is NOT continuous on the interval [3,7] since the function is not continuous at the point 5 in the interval.

-∢ ⊒ ▶

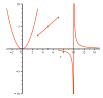
Definition A function f is <u>continuous on an interval</u> if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand *continuous* at the endpoint to mean *continuous from* the right or continuous from the left at the endpoint as appropriate.)



- ► The function shown above is continuous on the intervals (-∞, 0] and (-∞, 3) since it is continuous at every point in these intervals.
- The function shown above is NOT continuous on the interval [3,7] since the function is not continuous at the point 5 in the interval.
- ► The longest interval of the form (-∞, a) or (-∞, a] on which the above function is continuous is (-∞, 3).

過き くほき くほう

Definition A function f is <u>continuous on an interval</u> if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand *continuous* at the endpoint to mean *continuous from* the right or continuous from the left at the endpoint as appropriate.)



- ► The function shown above is continuous on the intervals (-∞, 0] and (-∞, 3) since it is continuous at every point in these intervals.
- ▶ The function shown above is NOT continuous on the interval [3,7] since the function is not continuous at the point 5 in the interval.
- ► The longest interval of the form (-∞, a) or (-∞, a] on which the above function is continuous is (-∞, 3).
- ► The longest interval of the form (5, a) or (5, a] on which the above function is continuous is (5, 7].

Last week, we saw that

3

< ∃ →

-

Last week, we saw that

A polynomial function, P(x) = c₀ + c₁x + c₂x² + ··· + c_nxⁿ, is continuous everywhere i.e. lim_{x→a} P(x) = P(a) for all real numbers a.

э

Last week, we saw that

- A polynomial function, P(x) = c₀ + c₁x + c₂x² + ··· + c_nxⁿ, is continuous everywhere i.e. lim_{x→a} P(x) = P(a) for all real numbers a.
- A rational function, f(x) = ^{P(x)}/_{Q(x)}, where P(x) and Q(x) are polynomials is continuous on its domain, i.e. lim_{x→a} f(x) = ^{P(a)}/_{Q(a)} for all values of a, where Q(a) ≠ 0.

Last week, we saw that

- A polynomial function, P(x) = c₀ + c₁x + c₂x² + ··· + c_nxⁿ, is continuous everywhere i.e. lim_{x→a} P(x) = P(a) for all real numbers a.
- A rational function, f(x) = ^{P(x)}/_{Q(x)}, where P(x) and Q(x) are polynomials is continuous on its domain, i.e. lim_{x→a} f(x) = ^{P(a)}/_{Q(a)} for all values of a, where Q(a) ≠ 0.
- If f(x) = ⁿ√x, where n is a positive integer, then f(x) is continuous on the interval [0,∞). We can use symmetry of graphs to extend this to show that f(x) is continuous on the interval (-∞,∞), when n is odd. Hence all n th root functions are continuous on their domains.

Last week, we saw that

- A polynomial function, P(x) = c₀ + c₁x + c₂x² + ··· + c_nxⁿ, is continuous everywhere i.e. lim_{x→a} P(x) = P(a) for all real numbers a.
- A rational function, f(x) = ^{P(x)}/_{Q(x)}, where P(x) and Q(x) are polynomials is continuous on its domain, i.e. lim_{x→a} f(x) = ^{P(a)}/_{Q(a)} for all values of a, where Q(a) ≠ 0.
- If f(x) = ⁿ√x, where n is a positive integer, then f(x) is continuous on the interval [0,∞). We can use symmetry of graphs to extend this to show that f(x) is continuous on the interval (-∞,∞), when n is odd. Hence all n th root functions are continuous on their domains.
- ► Theorem (proof at end of notes) The functions sin x and cos x are continuous on the interval (-∞,∞). In particular; for any real number a, we can evaluate the limits below by direct substitution

$$\lim_{x \to a} \sin x = \sin a, \qquad \lim_{x \to a} \cos x = \cos a.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Theorem 2 If f and g are continuous at a and c is constant, then the following functions are also continuous at a:

1. f+g **2.** f-g **3.** cf **4.** fg **5.** $\frac{f}{g}$ if $g(a) \neq 0$.

(本語) (本語) (本語) (二語)

Theorem 2 If f and g are continuous at a and c is constant, then the following functions are also continuous at a:

1.
$$f+g$$
 2. $f-g$ **3.** cf **4.** fg **5.** $\frac{f}{g}$ if $g(a) \neq 0$.

► Note Collecting the above results, we can show that the following types of functions and combinations of them using +, -, · and ÷ are continuous on their domains:

Polynomial Functions Rational functions Root Functions Trigonometric functions

- E - E

Theorem 2 If f and g are continuous at a and c is constant, then the following functions are also continuous at a:

1. f+g **2.** f-g **3.** cf **4.** fg **5.** $\frac{f}{g}$ if $g(a) \neq 0$.

► Note Collecting the above results, we can show that the following types of functions and combinations of them using +, -, · and ÷ are continuous on their domains:

Polynomial Functions Rational functions Root Functions Trigonometric functions

► For example all of the trigonometric function sin x, cos x, tan x, sec x, csc x, cot x are continuous on their domains.

(本間) (本語) (本語) (語)

Theorem 2 If f and g are continuous at a and c is constant, then the following functions are also continuous at a:

1. f+g **2.** f-g **3.** cf **4.** fg **5.** $\frac{f}{g}$ if $g(a) \neq 0$.

► Note Collecting the above results, we can show that the following types of functions and combinations of them using +, -, · and ÷ are continuous on their domains:

Polynomial Functions Rational functions Root Functions Trigonometric functions

- ► For example all of the trigonometric function sin x, cos x, tan x, sec x, csc x, cot x are continuous on their domains.
- For example the function k(x) = ³√x(x² + 2x + 1) + ^{x+1}/_{x-10} is continuous on its domain. (see notes for details).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Example Find the domain of the following function and use the theorem above to show that it is continuous on its domain: $g(x) = \frac{(x^2+3)^2}{x-10}$.

Example Let

$$m(x) = \begin{cases} cx^2 + 1 & x \ge 2\\ 10 - x & x < 2 \end{cases}$$

For which value of c is m(x) a continuous function?

・ 同 ト ・ ヨ ト ・ ヨ ト

Example Find the domain of the following function and use the theorem above to show that it is continuous on its domain: $g(x) = \frac{(x^2+3)^2}{x-10}$.

• Domain of
$$g = \{x \in \mathbb{R} | x \neq 10\}$$
.

Example Let

$$m(x) = \begin{cases} cx^2 + 1 & x \ge 2\\ 10 - x & x < 2 \end{cases}$$

For which value of c is m(x) a continuous function?

・ 同 ト ・ ヨ ト ・ ヨ ト

Example Find the domain of the following function and use the theorem above to show that it is continuous on its domain: $g(x) = \frac{(x^2+3)^2}{x-10}$.

• Domain of
$$g = \{x \in \mathbb{R} | x \neq 10\}.$$

Since it is a quotient of polynomials, (or a rational function) it is continuous on its domain.

Example Let

$$m(x) = \begin{cases} cx^2 + 1 & x \ge 2\\ 10 - x & x < 2 \end{cases}$$

For which value of c is m(x) a continuous function?

・ 同 ト ・ ヨ ト ・ ヨ ト

Example Find the domain of the following function and use the theorem above to show that it is continuous on its domain: $g(x) = \frac{(x^2+3)^2}{x-10}$.

• Domain of
$$g = \{x \in \mathbb{R} | x \neq 10\}.$$

Since it is a quotient of polynomials, (or a rational function) it is continuous on its domain.

Example Let

$$m(x) = \begin{cases} cx^2 + 1 & x \ge 2\\ 10 - x & x < 2 \end{cases}$$

For which value of c is m(x) a continuous function?

Since cx² + 1 and 10 − x are polynomials, there are continuous on the intervals (2,∞) and (−∞, 2) respectively.

Example Find the domain of the following function and use the theorem above to show that it is continuous on its domain: $g(x) = \frac{(x^2+3)^2}{x-10}$.

• Domain of
$$g = \{x \in \mathbb{R} | x \neq 10\}.$$

Since it is a quotient of polynomials, (or a rational function) it is continuous on its domain.

Example Let

$$m(x) = \begin{cases} cx^2 + 1 & x \ge 2\\ 10 - x & x < 2 \end{cases}$$

For which value of c is m(x) a continuous function?

- Since cx² + 1 and 10 − x are polynomials, there are continuous on the intervals (2,∞) and (−∞, 2) respectively.
- ▶ The function m(x) is continuous when the pieces meet, that is when $cx^2 + 1 = 10 x$ at x = 2.

イロト 不得下 不良下 不良下 一度

Example Find the domain of the following function and use the theorem above to show that it is continuous on its domain: $g(x) = \frac{(x^2+3)^2}{x-10}$.

• Domain of
$$g = \{x \in \mathbb{R} | x \neq 10\}.$$

Since it is a quotient of polynomials, (or a rational function) it is continuous on its domain.

Example Let

$$m(x) = \begin{cases} cx^2 + 1 & x \ge 2\\ 10 - x & x < 2 \end{cases}$$

For which value of c is m(x) a continuous function?

- Since cx² + 1 and 10 − x are polynomials, there are continuous on the intervals (2,∞) and (−∞, 2) respectively.
- ▶ The function m(x) is continuous when the pieces meet, that is when $cx^2 + 1 = 10 x$ at x = 2.
- That is when 4c + 1 = 8 or 4c = 7 or c = 7/4.

More Examples

Using continuity to calculate limits.

Note If a function f(x) is continuous on its domain and if *a* is in the domain of *f*, then

$$\lim_{x\to a}f(x)=f(a).$$

That is, if a is in the domain of f, we can calculate the limit at a by evaluation. If a is not in the domain of f, we can sometimes use the methods discussed in the last lecture to determine if the limit exists or find its value.

Example Find the following limit:

$$\lim_{x \to \frac{\pi}{2}} \frac{x \cos^2 x}{x + \sin x}$$

- ∢ ⊒ ▶

More Examples

Using continuity to calculate limits.

Note If a function f(x) is continuous on its domain and if *a* is in the domain of *f*, then

$$\lim_{x\to a}f(x)=f(a).$$

That is, if a is in the domain of f, we can calculate the limit at a by evaluation. If a is not in the domain of f, we can sometimes use the methods discussed in the last lecture to determine if the limit exists or find its value.

Example Find the following limit:

$$\lim_{x \to \frac{\pi}{2}} \frac{x \cos^2 x}{x + \sin x}$$

Since ^π/₂ is in the domain of the function f(x) = ^{x cos² x}/_{x+sin x} (which is continuous on its domain), we can just evaluate to get the limit.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

More Examples

Using continuity to calculate limits.

Note If a function f(x) is continuous on its domain and if *a* is in the domain of *f*, then

$$\lim_{x\to a}f(x)=f(a).$$

That is, if a is in the domain of f, we can calculate the limit at a by evaluation. If a is not in the domain of f, we can sometimes use the methods discussed in the last lecture to determine if the limit exists or find its value.

Example Find the following limit:

$$\lim_{x \to \frac{\pi}{2}} \frac{x \cos^2 x}{x + \sin x}$$

Since ^π/₂ is in the domain of the function f(x) = ^{x cos² x}/_{x+sin x} (which is continuous on its domain), we can just evaluate to get the limit.

•
$$\lim_{x \to \frac{\pi}{2}} \frac{x \cos^2 x}{x + \sin x} = \frac{\frac{\pi}{2} \cos^2(\frac{\pi}{2})}{\frac{\pi}{2} + \sin(\frac{\pi}{2})} = \frac{\frac{\pi}{2} \cdot 0}{\frac{\pi}{2} + 1} = 0.$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Composition of Functions

Composition of functions

We can further expand our catalogue of function continuous on their domains by considering composition of functions.

Theorem 3 If <u>G is a continuous at a</u> and <u>F is continuous at G(a), then the composite function $F \circ G$ given by $(F \circ G)(x) = F(G(x))$ is continuous at a, and</u>

$$\lim_{x\to a} (F \circ G)(x) = (F \circ G)(a).$$

That is :

$$\lim_{x\to a} F(G(x)) = F(\lim_{x\to a} G(x)).$$

Note that when the above conditions are met, we can calculate the limit by direct substitution.

Recall that the domain of $F \circ G$ is the set of points $\{x \in \text{dom} G | G(x) \in \text{dom} F\}$. Using this and the theorem above we get:

Theorem If f(x) = F(G(x)), then f is continuous at all points in its domain if G is continuous at all points in its domain and F is continuous at all points in its domain. (Note that we can repeat the process to get the same result for a function of the form F(G(H(x))).)

Example (a) Find the domain of the following function and determine if it is continuous on its domain?:

$$f(x)=\cos(x^3+1).$$

Recall : If $G(x) = x^3 + 1$ and $F(x) = \cos x$, then $F(G(x)) = \cos(x^3 + 1)$.

(b) What is $\lim_{x\to 5} \cos(x^3 + 1)$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Example (a) Find the domain of the following function and determine if it is continuous on its domain?:

$$f(x)=\cos(x^3+1).$$

Recall : If $G(x) = x^3 + 1$ and $F(x) = \cos x$, then $F(G(x)) = \cos(x^3 + 1)$.

Domain of F(G(x)) = {x ∈ domG|G(x) ∈ domF} = {x ∈ ℝ|x³ + 1 ∈ ℝ} = all real numbers.

(b) What is $\lim_{x\to 5} \cos(x^3 + 1)$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Example (a) Find the domain of the following function and determine if it is continuous on its domain?:

$$f(x)=\cos(x^3+1).$$

Recall : If $G(x) = x^3 + 1$ and $F(x) = \cos x$, then $F(G(x)) = \cos(x^3 + 1)$.

- Domain of F(G(x)) = {x ∈ domG|G(x) ∈ domF} = {x ∈ ℝ|x³ + 1 ∈ ℝ} = all real numbers.
- ▶ This function is continuous on its domain since both *F* and *G* are continuous on their domains.
- (b) What is $\lim_{x\to 5} \cos(x^3 + 1)$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Example (a) Find the domain of the following function and determine if it is continuous on its domain?:

$$f(x)=\cos(x^3+1).$$

Recall : If $G(x) = x^3 + 1$ and $F(x) = \cos x$, then $F(G(x)) = \cos(x^3 + 1)$.

- Domain of F(G(x)) = {x ∈ domG|G(x) ∈ domF} = {x ∈ ℝ|x³ + 1 ∈ ℝ} = all real numbers.
- ▶ This function is continuous on its domain since both *F* and *G* are continuous on their domains.
- (b) What is $\lim_{x\to 5} \cos(x^3 + 1)$?
 - Since f is continuous for all real numbers, we can just evaluate the function at x = 5 to find the limit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Example (a) Find the domain of the following function and determine if it is continuous on its domain?:

$$f(x)=\cos(x^3+1).$$

Recall : If $G(x) = x^3 + 1$ and $F(x) = \cos x$, then $F(G(x)) = \cos(x^3 + 1)$.

- Domain of F(G(x)) = {x ∈ domG|G(x) ∈ domF} = {x ∈ ℝ|x³ + 1 ∈ ℝ} = all real numbers.
- ▶ This function is continuous on its domain since both *F* and *G* are continuous on their domains.
- (b) What is $\lim_{x\to 5} \cos(x^3 + 1)$?
 - Since f is continuous for all real numbers, we can just evaluate the function at x = 5 to find the limit.
 - $\lim_{x\to 5} \cos(x^3 + 1) = \cos(5^3 + 1) = \cos(126).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Another Example

Example Recall that last day we found $\lim_{x\to 0} x^2 \sin(1/x)$ using the squeeze theorem. What is the limit?

Does the function

$$n(x) = \begin{cases} x^2 \sin(1/x) & x > 0 \\ x^2 \sin(1/x) & x < 0 \end{cases}$$

have a removable discontinuity at zero?

(in other words can I define the function to have a value at x = 0 making a continuous function?)

$$n_1(x) = \begin{cases} x^2 \sin(1/x) & x > 0 \\ ? & x = 0 \\ x^2 \sin(1/x) & x < 0 \end{cases}$$

- ∢ ≣ →

э

Another Example

Example Recall that last day we found $\lim_{x\to 0} x^2 \sin(1/x)$ using the squeeze theorem. What is the limit?

Does the function

$$n(x) = \begin{cases} x^2 \sin(1/x) & x > 0 \\ x^2 \sin(1/x) & x < 0 \end{cases}$$

have a removable discontinuity at zero?

(in other words can I define the function to have a value at x = 0 making a continuous function?)

$$n_1(x) = \begin{cases} x^2 \sin(1/x) & x > 0 \\ ? & x = 0 \\ x^2 \sin(1/x) & x < 0 \end{cases}$$

yes if we define n₁(x) = 0 at x = 0, the function n₁ will be continuous. (note that sin(1/x) is continuous on its domain because it is a composition of continuous functions and hence x² sin(1/x) is also continuous on its domain ({x | x ≠ 0}).

Intermediate value Theorem Suppose that f(x) is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b) ($f(a) \neq f(b)$), then there exists a number c in the interval (a, b) with f(c) = N.

Example use the intermediate value theorem to show that there is a root of the equation in the specified interval:

$$\cos x = x^2 \quad (0,\pi)$$

Intermediate value Theorem Suppose that f(x) is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b) ($f(a) \neq f(b)$), then there exists a number c in the interval (a, b) with f(c) = N.

Example use the intermediate value theorem to show that there is a root of the equation in the specified interval:

$$\cos x = x^2 \quad (0,\pi)$$

Let $f(x) = \cos x - x^2$. f is a continuous function with f(0) = 1 > 0 and $f(\pi) = -1 - \pi^2 < 0$.

・ 同 ト ・ 国 ト ・ 国 ト … 国

Intermediate value Theorem Suppose that f(x) is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b) ($f(a) \neq f(b)$), then there exists a number c in the interval (a, b) with f(c) = N.

Example use the intermediate value theorem to show that there is a root of the equation in the specified interval:

$$\cos x = x^2 \quad (0,\pi)$$

- Let $f(x) = \cos x x^2$. f is a continuous function with f(0) = 1 > 0 and $f(\pi) = -1 \pi^2 < 0$.
- According to the intermediate value theorem, there must be a number c with $0 < c < \pi$ for which f(c) = 0.

Intermediate value Theorem Suppose that f(x) is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b) ($f(a) \neq f(b)$), then there exists a number c in the interval (a, b) with f(c) = N.

Example use the intermediate value theorem to show that there is a root of the equation in the specified interval:

$$\cos x = x^2 \quad (0,\pi)$$

- Let $f(x) = \cos x x^2$. f is a continuous function with f(0) = 1 > 0 and $f(\pi) = -1 \pi^2 < 0$.
- According to the intermediate value theorem, there must be a number c with $0 < c < \pi$ for which f(c) = 0.
- If f(c) = 0, we have $\cos c c^2 = 0$ or $\cos c = c^2$ and c is a root of the equation given.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Recall from Lecture 2 that our intuition tells us that the slope of the tangent line to the curve at the point P is (see Mathematica Files)

$$m = \lim_{Q \to P} m_{PQ} = \lim_{x \to a} m_{PQ} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

< ∃⇒

Recall from Lecture 2 that our intuition tells us that the slope of the tangent line to the curve at the point P is (see Mathematica Files)

$$m = \lim_{Q \to P} m_{PQ} = \lim_{x \to a} m_{PQ} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

We can now calculate some of these limits much more swiftly than we could in Lecture 2, where we were limited to guesswork.

-∢ ≣ ▶

Recall from Lecture 2 that our intuition tells us that the slope of the tangent line to the curve at the point P is (see Mathematica Files)

$$m = \lim_{Q \to P} m_{PQ} = \lim_{x \to a} m_{PQ} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- We can now calculate some of these limits much more swiftly than we could in Lecture 2, where we were limited to guesswork.
- We first make a concrete definition of the tangent line to a curve at a point (finding a suitable definition was something we struggled with in Lecture 2):

-∢ ⊒ ▶

Recall from Lecture 2 that our intuition tells us that the slope of the tangent line to the curve at the point P is (see Mathematica Files)

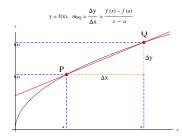
$$m = \lim_{Q \to P} m_{PQ} = \lim_{x \to a} m_{PQ} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

- We can now calculate some of these limits much more swiftly than we could in Lecture 2, where we were limited to guesswork.
- We first make a concrete definition of the tangent line to a curve at a point (finding a suitable definition was something we struggled with in Lecture 2):
- Definition When f(x) is defined in an open interval containing a, the Tangent Line to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided that the limit exists.

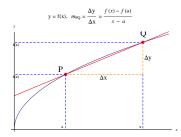
・ 伺 ト ・ ヨ ト ・ ヨ ト



We spent a lot of time on the following problem in Lecture 2, we can now solve it very quickly:

Example Find the equation of the tangent line to the curve $y = \sqrt{x}$ at P(1,1).

∃ ⊳

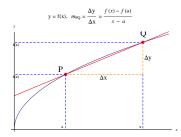


We spent a lot of time on the following problem in Lecture 2, we can now solve it very quickly:

Example Find the equation of the tangent line to the curve $y = \sqrt{x}$ at P(1,1).

$$\blacktriangleright m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to 1} \frac{\sqrt{x} - \sqrt{1}}{x - 1}$$

∃ ⊳



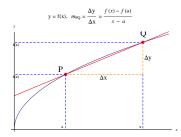
We spent a lot of time on the following problem in Lecture 2, we can now solve it very quickly:

Example Find the equation of the tangent line to the curve $y = \sqrt{x}$ at P(1,1).

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to 1} \frac{\sqrt{x} - \sqrt{1}}{x - 1}$$

$$= \lim_{x \to 1} \frac{(\sqrt{x} - \sqrt{1})(\sqrt{x} + 1)}{(x - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{(x - 1)}{(x - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = 1/2$$

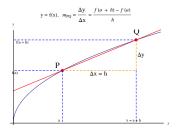
∃ ⊳



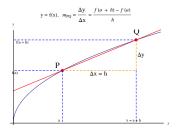
We spent a lot of time on the following problem in Lecture 2, we can now solve it very quickly:

Example Find the equation of the tangent line to the curve $y = \sqrt{x}$ at P(1,1).

 $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to 1} \frac{\sqrt{x} - \sqrt{1}}{x - 1}$ $= \lim_{x \to 1} \frac{(\sqrt{x} - \sqrt{1})(\sqrt{x} + 1)}{(x - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{(x - 1)}{(x - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = 1/2$ The equation of the tangent to the curve at <math>P(1, 1) is $(y - 1) = m(x - 1) \text{ or } (y - 1) = \frac{1}{2}(x - 1) \text{ or } y = \frac{1}{2}x + \frac{1}{2}.$

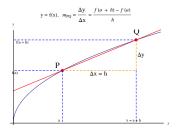


Note The limit in the definition of a tangent can be rewritten as follows: $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. Example Find the equation of the tangent line to the graph of $f(x) = x^2 + 5x$ at the point (1, 6).



Note The limit in the definition of a tangent can be rewritten as follows: $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. Example Find the equation of the tangent line to the graph of $f(x) = x^2 + 5x$ at the point (1, 6).

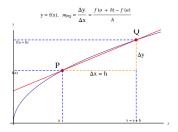
•
$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 + 5(1+h) - 6}{h}$$



Note The limit in the definition of a tangent can be rewritten as follows: $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. Example Find the equation of the tangent line to the graph of $f(x) = x^2 + 5x$ at the point (1, 6).

•
$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 + 5(1+h) - 6}{h}$$

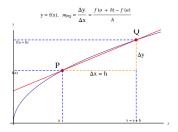
• $= \lim_{h \to 0} \frac{(1+2h+h^2) + (5+5h) - 6}{h} = \lim_{h \to 0} \frac{2h+h^2 + 5h}{h} = \lim_{h \to 0} \frac{h(h+7)}{h}$



Note The limit in the definition of a tangent can be rewritten as follows: $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. Example Find the equation of the tangent line to the graph of $f(x) = x^2 + 5x$ at the point (1, 6).

•
$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 + 5(1+h) - 6}{h}$$

• $= \lim_{h \to 0} \frac{(1+2h+h^2) + (5+5h) - 6}{h} = \lim_{h \to 0} \frac{2h+h^2 + 5h}{h} = \lim_{h \to 0} \frac{h(h+7)}{h}$
• $= \lim_{h \to 0} (h+7) = 7$



Note The limit in the definition of a tangent can be rewritten as follows: $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. **Example** Find the equation of the tangent line to the graph of $f(x) = x^2 + 5x$ at the point (1, 6).

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 + 5(1+h) - 6}{h}$$

$$= \lim_{h \to 0} \frac{(1+2h+h^2) + (5+5h) - 6}{h} = \lim_{h \to 0} \frac{2h+h^2 + 5h}{h} = \lim_{h \to 0} \frac{h(h+7)}{h}$$

$$= \lim_{h \to 0} (h+7) = 7$$

$$The tangent line at (1, 6) is given by $y - 6 = 7(x - 1)$ or $y = 7x - 5$$$

Definition When f(x) is defined in an open interval containing *a*, the **derivative** of the function *f* at the number *a* is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exists.

Definition When f(x) is defined in an open interval containing *a*, the **derivative** of the function *f* at the number *a* is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exists.

►
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{(a+h)^2 + 5(a+h) - (a^2 + 5a)}{h}$$

Definition When f(x) is defined in an open interval containing *a*, the **derivative** of the function f at the number *a* is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exists.

Definition When f(x) is defined in an open interval containing *a*, the **derivative** of the function *f* at the number *a* is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exists.

Definition When f(x) is defined in an open interval containing *a*, the **derivative** of the function *f* at the number *a* is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exists.

Definition When f(x) is defined in an open interval containing *a*, the **derivative** of the function *f* at the number *a* is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exists.

Note The slope of the tangent line to the graph y = f(x) at the point (a, f(a)) is the derivative of f at a, f'(a). (When f'(a) exists it is sometimes referred to as the slope of the curve y = f(x) at x = a.) **Example** Let $f(x) = x^2 + 5x$. Find f'(a), f'(2) and f'(-1).

• When a = -1, we get f'(-1) = 2(-1) + 5 = 3.

Equation of the Tangent Line Note that the equation of the tangent line to the graph of a function f at the point (a, f(a)) is given by

$$(y-f(a))=f'(a)(x-a).$$

(since the derivative of the function at *a* is the slope of the tangent at *a*.) **Example** Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = 2.

Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = -1.

||▲ 同 ト || 三 ト || 三 ト

Equation of the Tangent Line Note that the equation of the tangent line to the graph of a function f at the point (a, f(a)) is given by

$$(y-f(a))=f'(a)(x-a)$$

(since the derivative of the function at *a* is the slope of the tangent at *a*.) **Example** Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = 2.

We saw above that f'(2) = 9, where f(x) = x² + 5x. The point on the curve when x = 2 is (2, 14).

Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = -1.

イロン 不同と 不同と 不同とう

Equation of the Tangent Line Note that the equation of the tangent line to the graph of a function f at the point (a, f(a)) is given by

$$(y-f(a))=f'(a)(x-a)$$

(since the derivative of the function at *a* is the slope of the tangent at *a*.) **Example** Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = 2.

- We saw above that f'(2) = 9, where f(x) = x² + 5x. The point on the curve when x = 2 is (2, 14).
- So the equation of the tangent line to the curve at x = 2 is (y 14) = 9(x 2) or y = 9x 4.

Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = -1.

・ロト ・ 四ト ・ モト ・ モト …

Equation of the Tangent Line Note that the equation of the tangent line to the graph of a function f at the point (a, f(a)) is given by

$$(y-f(a))=f'(a)(x-a)$$

(since the derivative of the function at *a* is the slope of the tangent at *a*.) **Example** Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = 2.

- We saw above that f'(2) = 9, where f(x) = x² + 5x. The point on the curve when x = 2 is (2, 14).
- So the equation of the tangent line to the curve at x = 2 is (y − 14) = 9(x − 2) or y = 9x − 4.

Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = -1.

We saw above that f'(−1) = 3, where f(x) = x² + 5x. The point on the curve when x = −1 is (−1, −4).

Equation of the Tangent Line Note that the equation of the tangent line to the graph of a function f at the point (a, f(a)) is given by

$$(y-f(a))=f'(a)(x-a).$$

(since the derivative of the function at *a* is the slope of the tangent at *a*.) **Example** Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = 2.

- We saw above that f'(2) = 9, where f(x) = x² + 5x. The point on the curve when x = 2 is (2, 14).
- So the equation of the tangent line to the curve at x = 2 is (y 14) = 9(x 2) or y = 9x 4.

Find the equation of the tangent line to the graph $y = x^2 + 5x$ at the point where x = -1.

We saw above that f'(-1) = 3, where f(x) = x² + 5x. The point on the curve when x = −1 is (-1, -4).

So the equation of the tangent line to the curve at x = -1 is (y+4) = 3(x+1) or y = 3x - 1.

Positive/Negative Derivative

Note Since the derivative of f(x) at any point on the curve (if it exists) measures the slope of the curve or the slope of a tangent, our intuition allows us to make the following statements, which can be verified algebraically:

∃ ≥ >

Positive/Negative Derivative

Note Since the derivative of f(x) at any point on the curve (if it exists) measures the slope of the curve or the slope of a tangent, our intuition allows us to make the following statements, which can be verified algebraically:

When the derivative of a function f at a is positive, the function is increasing.

< ∃ >

Note Since the derivative of f(x) at any point on the curve (if it exists) measures the slope of the curve or the slope of a tangent, our intuition allows us to make the following statements, which can be verified algebraically:

- ▶ When the derivative of a function *f* at *a* is positive, the function is increasing.
- ▶ When the derivative of a function *f* at *a* is negative, the function is decreasing.

- ∢ ⊒ ▶

Note Since the derivative of f(x) at any point on the curve (if it exists) measures the slope of the curve or the slope of a tangent, our intuition allows us to make the following statements, which can be verified algebraically:

- ▶ When the derivative of a function *f* at *a* is positive, the function is increasing.
- ▶ When the derivative of a function *f* at *a* is negative, the function is decreasing.
- When the absolute value of the derivative is small, the function is changing slowly (a small change in the value of x leads to a small change in the value of f(x)).

★ E ► ★ E ►

Note Since the derivative of f(x) at any point on the curve (if it exists) measures the slope of the curve or the slope of a tangent, our intuition allows us to make the following statements, which can be verified algebraically:

- When the derivative of a function f at a is positive, the function is increasing.
- ▶ When the derivative of a function *f* at *a* is negative, the function is decreasing.
- When the absolute value of the derivative is small, the function is changing slowly (a small change in the value of x leads to a small change in the value of f(x)).
- When the absolute value of the derivative is large, the function values are changing rapidly (a small change in x leads to a large change in f(x)).

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Note Since the derivative of f(x) at any point on the curve (if it exists) measures the slope of the curve or the slope of a tangent, our intuition allows us to make the following statements, which can be verified algebraically:

- When the derivative of a function f at a is positive, the function is increasing.
- ▶ When the derivative of a function *f* at *a* is negative, the function is decreasing.
- When the absolute value of the derivative is small, the function is changing slowly (a small change in the value of x leads to a small change in the value of f(x)).
- When the absolute value of the derivative is large, the function values are changing rapidly (a small change in x leads to a large change in f(x)).
- We will explore this in more detail next day.

Some limits are easy to calculate when we recognize them as derivatives: **Example** The following limits represent the derivative of a function f at a number a. In each case, what is f(x) and a?

-∢ ⊒ ▶

Some limits are easy to calculate when we recognize them as derivatives: **Example** The following limits represent the derivative of a function f at a number a. In each case, what is f(x) and a?

• (a)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \frac{1}{\sqrt{2}}}{x - \pi/4}$$

-∢ ⊒ ▶

Some limits are easy to calculate when we recognize them as derivatives: **Example** The following limits represent the derivative of a function f at a number a. In each case, what is f(x) and a?

(a)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \frac{1}{\sqrt{2}}}{x - \pi/4}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{f(x) - f(a)}{x - \pi/4}$$

-∢ ⊒ ▶

Some limits are easy to calculate when we recognize them as derivatives: **Example** The following limits represent the derivative of a function f at a number a. In each case, what is f(x) and a?

• (a)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \frac{1}{\sqrt{2}}}{x - \pi/4}$$

• $= \lim_{x \to \frac{\pi}{4}} \frac{f(x) - f(a)}{x - \pi/4}$
• $f(x) = \sin x, \ a = \pi/4.$ (Check that $\sin(\pi/4) = 1/\sqrt{2}$.)

-∢ ⊒ ▶

Some limits are easy to calculate when we recognize them as derivatives: **Example** The following limits represent the derivative of a function f at a number a. In each case, what is f(x) and a?

• (a)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \frac{1}{\sqrt{2}}}{x - \pi/4}$$

• $= \lim_{x \to \frac{\pi}{4}} \frac{f(x) - f(a)}{x - \pi/4}$
• $f(x) = \sin x, \ a = \pi/4.$ (Check that $\sin(\pi/4) = 1/\sqrt{2}.$)
• (b) $\lim_{h \to 0} \frac{(1+h)^4 + (1+h) - 2}{h}$

-∢ ⊒ ▶

Some limits are easy to calculate when we recognize them as derivatives: **Example** The following limits represent the derivative of a function f at a number a. In each case, what is f(x) and a?

4 E b

Some limits are easy to calculate when we recognize them as derivatives: **Example** The following limits represent the derivative of a function f at a number a. In each case, what is f(x) and a?

• (a)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \frac{1}{\sqrt{2}}}{x - \pi/4}$$

• $= \lim_{x \to \frac{\pi}{4}} \frac{f(x) - f(a)}{x - \pi/4}$
• $f(x) = \sin x, \ a = \pi/4.$ (Check that $\sin(\pi/4) = 1/\sqrt{2}$.
• $(b) \ \lim_{h \to 0} \frac{(1+h)^4 + (1+h) - 2}{h}$
• $\lim_{h \to 0} \frac{(1+h)^4 + (1+h) - 2}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.
• $f(a+h) = (1+h)^4 + (1+h), \ f(a) = 2$.

4 E b

Some limits are easy to calculate when we recognize them as derivatives: **Example** The following limits represent the derivative of a function f at a number a. In each case, what is f(x) and a?

• (a)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \frac{1}{\sqrt{2}}}{x - \pi/4}$$

• $= \lim_{x \to \frac{\pi}{4}} \frac{f(x) - f(a)}{x - \pi/4}$
• $f(x) = \sin x, a = \pi/4$. (Check that $\sin(\pi/4) = 1/\sqrt{2}$.
• $(b) \quad \lim_{h \to 0} \frac{(1+h)^4 + (1+h) - 2}{h}$
• $\lim_{h \to 0} \frac{(1+h)^4 + (1+h) - 2}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.
• $f(a+h) = (1+h)^4 + (1+h), f(a) = 2$.
• $f(x) = x^4 + x$ and $a = 1$ works.

4 E b

If an object moves in a straight line, the displacement from the origin at time t is given by the **position function** s = f(t), where s is the displacement of the object from the origin at time t.

The average velocity of the object over the time interval $[t_1, t_2]$ is given by

$$\frac{f(t_2)-f(t_1)}{t_2-t_1}.$$

The **velocity (or instantaneous velocity)** at time t = a is given by the following limit of average velocities:

$$v(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = f'(a)$$

Thus the velocity at time t = a is the slope of the tangent line to the curve y = s = f(t) at the point where t = a.

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

イロン 不同と 不同と 不同とう

If an object moves in a straight line, the displacement from the origin at time t is given by the **position function** s = f(t), where s is the displacement of the object from the origin at time t.

The average velocity of the object over the time interval $[t_1, t_2]$ is given by

$$\frac{f(t_2)-f(t_1)}{t_2-t_1}.$$

The **velocity (or instantaneous velocity)** at time t = a is given by the following limit of average velocities:

$$v(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = f'(a)$$

Thus the velocity at time t = a is the slope of the tangent line to the curve y = s = f(t) at the point where t = a.

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

► (a) What is the average velocity of the stone between t₁ = 1 and t₂ = 5 seconds?

If an object moves in a straight line, the displacement from the origin at time t is given by the **position function** s = f(t), where s is the displacement of the object from the origin at time t.

The average velocity of the object over the time interval $[t_1, t_2]$ is given by

$$\frac{f(t_2)-f(t_1)}{t_2-t_1}.$$

The velocity (or instantaneous velocity) at time t = a is given by the following limit of average velocities:

$$v(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = f'(a)$$

Thus the velocity at time t = a is the slope of the tangent line to the curve y = s = f(t) at the point where t = a.

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- (a) What is the average velocity of the stone between $t_1 = 1$ and $t_2 = 5$ seconds?
- average velocity = $\frac{\text{change in position}}{\text{time}} = \frac{s(5)-s(1)}{5-1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If an object moves in a straight line, the displacement from the origin at time t is given by the **position function** s = f(t), where s is the displacement of the object from the origin at time t.

The average velocity of the object over the time interval $[t_1, t_2]$ is given by

$$\frac{f(t_2)-f(t_1)}{t_2-t_1}.$$

The velocity (or instantaneous velocity) at time t = a is given by the following limit of average velocities:

$$v(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = f'(a)$$

Thus the velocity at time t = a is the slope of the tangent line to the curve y = s = f(t) at the point where t = a.

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- ► (a) What is the average velocity of the stone between t₁ = 1 and t₂ = 5 seconds?
- average velocity = $\frac{\text{change in position}}{\text{time}} = \frac{s(5)-s(1)}{5-1}$

$$\blacktriangleright = \frac{10(5) - 16(25) - [10(1) - 16]}{4} = -86 \text{ ft/s.}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- 本間 と く ヨ と く ヨ と

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

 (b) What is the instantaneous velocity of the stone at t = 1 second. (Note that speed = |Velocity|)?

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- (b) What is the instantaneous velocity of the stone at t = 1 second. (Note that speed = |Velocity|)?
- ▶ Instantaneous velocity at $t = 1 = s'(1) = \lim_{h \to 0} \frac{s(1+h) s(1)}{h}$

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- (b) What is the instantaneous velocity of the stone at t = 1 second. (Note that speed = |Velocity|)?
- ▶ Instantaneous velocity at $t = 1 = s'(1) = \lim_{h \to 0} \frac{s(1+h) s(1)}{h}$

$$\blacktriangleright = \lim_{h \to 0} \frac{10(1+h) - 16(1+h)^2 - [10-16]}{h}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- (b) What is the instantaneous velocity of the stone at t = 1 second. (Note that speed = |Velocity|)?
- ▶ Instantaneous velocity at $t = 1 = s'(1) = \lim_{h \to 0} \frac{s(1+h) s(1)}{h}$

$$= \lim_{h \to 0} \frac{10(1+h) - 16(1+h)^2 - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10 + 10h - 16(1+2h+h^2) - [10-16]}{h}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- (b) What is the instantaneous velocity of the stone at t = 1 second. (Note that speed = |Velocity|)?
- ▶ Instantaneous velocity at $t = 1 = s'(1) = \lim_{h \to 0} \frac{s(1+h) s(1)}{h}$

$$= \lim_{h \to 0} \frac{10(1+h) - 16(1+h)^2 - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10 + 10h - 16(1+2h+h^2) - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10 + 10h - 16 - 32h - 16h^2 - [10-16]}{h}$$

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- (b) What is the instantaneous velocity of the stone at t = 1 second. (Note that speed = |Velocity|)?
- ▶ Instantaneous velocity at $t = 1 = s'(1) = \lim_{h \to 0} \frac{s(1+h) s(1)}{h}$

$$= \lim_{h \to 0} \frac{10(1+h) - 16(1+h)^2 - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10 + 10h - 16(1+2h+h^2) - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10 + 10h - 16 - 32h - 16h^2 - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{-22h - 16h^2}{h}$$

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- (b) What is the instantaneous velocity of the stone at t = 1 second. (Note that speed = |Velocity|)?
- ▶ Instantaneous velocity at $t = 1 = s'(1) = \lim_{h \to 0} \frac{s(1+h) s(1)}{h}$

$$= \lim_{h \to 0} \frac{10(1+h) - 16(1+h)^2 - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10 + 10h - 16(1+2h+h^2) - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10 + 10h - 16 - 32h - 16h^2 - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{-22h - 16h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(16h - 22)}{h}$$

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- (b) What is the instantaneous velocity of the stone at t = 1 second. (Note that speed = |Velocity|)?
- ▶ Instantaneous velocity at $t = 1 = s'(1) = \lim_{h \to 0} \frac{s(1+h) s(1)}{h}$

$$= \lim_{h \to 0} \frac{10(1+h)-16(1+h)^2 - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10+10h-16(1+2h+h^2) - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10+10h-16-32h-16h^2 - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{-22h-16h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(16h-22)}{h}$$

$$= \lim_{h \to 0} (16h-22) = -22.$$

Example The position function of a stone thrown from a bridge is given by (height =) $s(t) = 10t - 16t^2$ feet (below the bridge) after t seconds.

- (b) What is the instantaneous velocity of the stone at t = 1 second. (Note that speed = |Velocity|)?
- ▶ Instantaneous velocity at $t = 1 = s'(1) = \lim_{h \to 0} \frac{s(1+h) s(1)}{h}$

$$= \lim_{h \to 0} \frac{10(1+h) - 16(1+h)^2 - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10 + 10h - 16(1+2h+h^2) - [10-16]}{h}$$

$$= \lim_{h \to 0} \frac{10 + 10h - 16 - 32h - 16h^2 - [10-16]}{h}$$

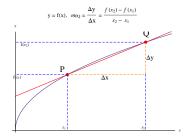
$$= \lim_{h \to 0} \frac{-22h - 16h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(16h - 22)}{h}$$

$$= \lim_{h \to 0} (16h - 22) = -22.$$

• Instantaneous velocity at t = 1 is -22 ft/s

Different Notation, Rates of change, Δx , Δy



With the above notation, $\Delta x = x_2 - x_1$ and $\Delta y = f(x_2) - f(x_1)$. Slope of the secant PQ = the difference quotient = $\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} =$ the average rate of change of y with respect to x.

The instantaneous rate of change of y with respect to x, when $x = x_1$ is $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad (= f'(x_1)).$

In economics, the instantaneous rate of change of the cost function (revenue function) is called the **Marginal Cost** (Marginal Revenue).